EFFECTS OF SWITCHING BARRIERS OF VISITORS ON SATISFACTION-COMMITMENT RELATIONSHIP

Hsiou-Hsiang Jack Liu¹, Tsai-Fa Yen² and Tzung-Cheng (T.C.) Huan³

Received: February 20, 2010
Accepted: March 20, 2010

¹Department of Tourism Management, National Kaohsiung University of Applied Sciences
E-mail: jackliu@cc.kuas.edu.tw

²Department of Business Administration, National Pingtung University of Science and Technology,
E-mail: mygirltea@hotmail.com

Corresponding author:
³College of Management, National Chiayi University, Taiwan,
E-mail: tchuan@mail.nchu.edu.tw

ABSTRACT

Customer commitment can influence the way in which customers behave in relation to a firm. This study tries to address the issue why visitors satisfied with farm but their revisiting intention and revisiting frequent are still low. The purposes of the study are to increase our understanding of perceived switching costs (SWC) and alternative attractiveness (AA) of a visitor and the role it plays in satisfaction (SAT)-affective commitment (AC) relation to switch leisure farms. Data was collected from two types of farms (restaurant and lodging) and hypotheses were tested using regression analysis. The findings of present study provide supports for extending prior researches to a leisure industry setting. That is, current study finds support for the notion that visitors’ AC can be influenced by SAT and AA; visitors’ SAT-AC relation can also be moderated only by AA. Finally, some implications for practice and future research were drawn.

Key words: Switching barriers, commitment, switching costs, alternative attractiveness, satisfaction

INTRODUCTION

Leisure agriculture in Taiwan originated in the 1980’s with the form of tourist farms, then it gradually evolved into various types of educational farms, resident farms, experiential leisure farms and all-round(comprehensive/ hybrid/integrated) leisure farms. The average number of new founded leisure farms also increased from 30 per year before 2000 to 80 per year during 2000-2004. In 2007, the total amount of leisure farms has been more than 1100, and the total revenue from all the leisure farms also reached to an estimated 4.5 billion NT dollars in 2004 (Tuan, 2006; Chen, Tuan, Lin and Xie, 2007). In 2006, the gross output value of leisure agriculture was estimated to be 21.7 billion NT dollars. The prospects and the growth capacity of Taiwan leisure agriculture are enormous (Yen and Liou,
With the active growth of leisure agriculture, leisure farms are now facing some marketing difficulties. For instance, lack of distinction and high similarity among leisure farms may lead to higher churn rate of the tourists or low revisiting rate despite of high revisit intention (Cheng, 2003; Lin, Chen and Wang, 2007). Refer to these problems, there has been studies indicated that providing good service behavior and professional interpretation may help leisure farms improve relationship quality (RQ) and revisit intention (Wei, 2008). Good service quality may also enhance customer loyalty (Lee, Chou and Lin, 2006) while higher relationship investment, e.g. direct mail/contact, interpersonal communication, preferential treatment, tangible rewards, etc., may be helpful in shaping relationship quality between leisure farms and tourists (Yen and Liou, 2009). But all of these papers never involved the issue of switching costs (SWC). Generally, different characters of leisure farms (e.g. fruits harvesting farms, B & B farms) may cause different switching costs a visitor perceived. For instance, B & B farms which require visitors to pay a deposit in advance may have higher switching costs than fruits harvesting farms, and this can cause lower revisiting rate. It is also likely that visitors prefer to try different tastes and therefore get induced by other new places and result in lower revisiting rate as well. This study inferred the reason why some farms with higher similarity have lower revisiting rate and much difficulty in getting commitments from visitors could be lower switching costs and higher alternative attractiveness. Therefore, it is necessary to clarify the relationship among switching costs, alternative attractiveness (AA), and commitments of visitors for current research.

Bansal, Irving and Taylor (2004) stated that the higher switching costs and the lower alternative attractiveness customer perceived may reduce customers’ switching intention mediated by the higher continuance intention and the higher satisfaction customer perceived may reduce customers’ switching intention mediated by the higher affective commitment. It didn’t discuss whether the higher/ lower switching costs and the higher/ lower alternative attractiveness might moderate the SAT-AC relations. This is very important for leisure agriculture industry because these leisure farms always emphasize the affective experiences and interactions of visitors with farms. When visitors perceived the attractiveness of alternative places is higher than current farm or switch to other places is easy and convenient, they might have lower revisiting intention although they are satisfied with current farm. Some empirical studies also reported customer perceived satisfaction-repurchase intention relation could be different when customer perceived the switching costs and the alternative attractiveness were different (Ping, 1993; Bendapudi and Berry, 1997; Jones, Mothersbaugh and Beatty, 2000; Jones, Reynolds, Mothersbaugh, and Beatty, 2007; Lin, Chen and Wang, 2007). Are switching costs and alternative attractiveness antecedents of AC in leisure agriculture? Do switching costs and alternative attractiveness moderate SAT-AC relation in leisure agriculture? To clarify and confirm the role of switching costs and alternative attractiveness on SAT-AC relation is important and necessary for leisure agriculture and academics because it can benefit the farmer by making better decision and the applied area for marketing theory will be expanded.

Based on these research problems, the objectives of this study are (1) to test the effects of satisfaction, switching costs and alternative attractiveness on affective commitment; (2) to clarify whether
switching costs and alternative attractiveness are the moderators on SAT-AC relation in leisure agriculture industry; (3) to offer some implications based on the results.

Literature Review

By integrating both theoretical frameworks, this study proposes the conceptual model depicted in Figure 1.

Smith and Barclay (1997) claim that satisfaction with the relationship is regarded as an important outcome of buyer-seller relationship. Satisfaction is an overall evaluation of performance based on all prior experiences with a firm (Anderson and Fornell, 1994; Bitner and Hubbert, 1994). De Wulf *et al.* (2001) define relationship satisfaction as a consumer’s affective state resulting from an overall appraisal of his or her relationship with a retailer. Therefore, this study conceptualizes visitors perceived relationship satisfaction (RS) as an affective state in contrast with more rational outcomes (Anderson and Narus 1990) with a leisure farm (Yen and Liou, 2009).

This study focuses more specifically on satisfaction with the core service provided (hereafter, core-service satisfaction; see Crosby and Stephens, 1987) to distinguish satisfaction with the service from perceptions of the personnel who provide the service. Conceptually, higher levels of core-service satisfaction should reduce the perceived benefits of switching service providers, thus, yielding higher repurchase intentions (Anderson and Sullivan, 1993). Empirically, considerable research supports the linkage between satisfaction and retention (e.g., Fornell, 1992; Oliver and Swan, 1989; Taylor and Baker, 1994). Thus, the following (replication) hypothesis is offered.

Commitment appears to be one of the most important variables for understanding the strength of a marketing relationship, and it is a practical construct for measuring the likelihood of consumer loyalty as well as for predicting future purchase frequency (Dwyer, Schurr and Oh, 1987; Gundlach, Achrol and Mentzer, 1995; Morgan and Hunt 1994). Dwyer *et al.* (1987) consider that commitment is generally regarded to be an important result of good relational interaction. Affective commitment “reflects an emotional attachment to, identification with and involvement in an organization” (Meyer and Smith, 2000; Bansal *et al.*, 2004). In a consumer context, this affective force binds the consumer to the service provider out of desire. It reflects an individual’s “psychological bond” (Gruen, Summers and Acito, 2000) with a service provider and is similar to “loyalty commitment” described by Gilliland and Bello (2002). Many of the unidimensional conceptualizations of commitment in other marketing research contexts actually tapped the affective dimension of commitment (e.g., Garbarino and Johnson 1999; Hennig-Thurau, Gwinner, and Gremler, 2002; Morgan and Hunt 1994; Bansal *et al.*, 2004). As such, this study already has some evidence that satisfaction (Garbarino and Johnson 1999; Hennig-Thurau *et al.*, 2002; Bansal *et al.*, 2004; Yen and Liou, 2009) might act as drivers of this type of commitment. Thus, the following (replication) hypothesis is offered.

H1: the higher relationship satisfaction visitors perceived leads to the higher affective commitment.

Switching barriers represent any factor, which makes it more difficult or costly for consumers to change providers. Jones *et al.* (2000) examine three such barriers in the context of consumer services, namely interpersonal relationships, perceived switching costs, and the attractiveness of competing
alternatives. Such barriers are likely to be prevalent in consumer services given their highly customized, personalized, and geographically disperse nature (see, e.g., Zeithaml, 1981). A core proposition is that the relationship between satisfaction and repurchase intentions is contingent on switching barriers (Jones et al., 2000). Higher levels of core-service satisfaction should reduce the perceived benefits of switching service providers, thus, yielding higher repurchase intentions (Anderson and Sullivan, 1993). And commitment is a good predictor for predicting future purchase frequency (Dwyer et al., 1987; Gundlach et al., 1995; Morgan and Hunt, 1994). Thus, while this study includes main-effect hypotheses to explicate the theoretical foundations for two of three switching barrier effects (SWC and AA), current study notes that (1) the interactions are the core focus given this contingency approach, and (2) any main effects or lack thereof will be interpreted in light of relevant interactions (see, e.g., Baron and Kenny, 1986).

Perceived switching costs are consumer perceptions of the time, money, and effort associated with changing service providers (Jones et al., 2000). Such costs may entail search costs resulting from the geographic dispersion of service alternatives, as well as learning costs resulting from the customized nature of many service encounters (Guiltnan, 1989). As the perceived costs of an activity increase, the likelihood of consumers engaging in such behavior should diminish. For example, research in the area of information economics demonstrates that as the costs of information increase, the extent of search declines (Urbany, 1986). In addition, research on employee turnover demonstrates that employees are less likely to change jobs as the costs of doing so increase (e.g., Becker, 1960; Farrell and Rusbult, 1981). Switching service providers is likely to involve various behavioral and psychological costs, and such costs should act to diminish switching tendencies (Jones et al., 2000). Although SWC act as a good predictor of continuance commitment (Bansal et al., 2004), none of study test its impact on AC. Thus, this study hypothesizes that H2a: Higher visitor perceived switching costs are associated with higher AC.

Economic models of buyer behavior generally posit that consumers weigh both the costs and benefits of a particular decision (Hauser and Wernerfelt, 1990; Ratchford, 1982; Stigler, 1961). One implication is that as perceived switching costs increase, the perceived costs of switching should eventually outweigh the perceived switching benefits arising from dissatisfaction with the core service. When perceived switching costs are low, dissatisfied consumers should be more likely to defect than are satisfied customers. Alternatively, when perceived switching costs are high, customers may remain despite their dissatisfaction due to perceptions that switching costs outweigh switching benefits (Jones et al., 2000). Thus, the probability for developing SAT-AC relation might be highly moderated by switching costs. Therefore, this study hypothesizes that:

H2b: As perceived switching costs increase, the relationship between satisfaction and AC will diminish (i.e., switching costs × satisfaction interaction).

Alternative Attractiveness refers to customer perceptions regarding the extent to which viable competing alternatives are available in the marketplace (Jones et al., 2000). When consumers perceive few viable alternatives, the perceived benefits of defecting should be relatively low, resulting in higher levels of retention. Empirical evidence across a number of areas including interpersonal relationships and employee turnover (Rusbult, 1980; Farrell and Rusbult, 1981), as well as channels relationships (Ping, 1993)
supports this line of reasoning and demonstrates that when viable alternatives are lacking, the probability of terminating an existing relationship decreases. Although AA act as a good predictor of continuance commitment (Bansal et al., 2004), none of study tests its impact on AC. Thus, this study hypothesizes that: H3a: Lower attractiveness of competing alternatives is associated with higher AC.

Earlier, this study argued that a decline in satisfaction should increase perceptions of switching benefits in terms of finding a superior alternative and thus decrease AC (Yen and Liou, 2009). A dearth of viable alternatives in the marketplace should mitigate such an effect and increase consumer reliance on a provider even when service performance is sub-standard (see Ping, 1993). Alternatively, when numerous acceptable alternatives are perceived to exist, dissatisfied consumers should perceive substantial benefits to switching and be more likely to defect than satisfied customers (Jones et al., 2000). The probability for developing SAT-AC relation might decrease or be lower. Thus: H3b: As the AA increases (i.e., the number of acceptable firms from which to choose decreases), the relationship between satisfaction and AC will increase (i.e., AA satisfaction interaction).

METHODOLOGY

To ensure the content validity of the scales, the items selected constructs were mainly adapted from prior studies and there good evidences including reliability and validity were offered. The study used exiting scales for measuring the satisfaction, switching costs, alternative attractiveness and affective commitment (see Appendix). Three items for SAT were drawn based on the studies of De Wulf et al. (2001) and Yen and Liou (2009). Three items for SWC were drawn based on the studies of Bansal et al. (2004) and Jones et al. (2000). Three items for AA were drawn based on the studies of Bansal et al. (2004) and Jones et al. (2000). Three items for AC were drawn based on the studies of Bansal et al. (2004), Jones et al. (2000) and Yen and Liou (2009). The initial items were confirmed and corrected by the manager of leisure farms and pretest was done by EMBA students in NPUST, Taiwan. For items, responses were ratings from 1 to 7. The anchors are “strongly disagree” (1) and “strongly agree” (7) for measuring SWC, AA and AC. The anchors for SAT are “strongly displeased” (1) and “strongly pleased” (7), “strongly disgusted” (1) and “strongly
gusted” (7) and “strongly dissatisfied” (1) and “strongly satisfied” (7).

It was decided that the model would be tested by collecting data from Taiwanese leisure farms. Two farms were selected. They were selected expecting adequate diversity of quality and loyalty to allow a model to be estimated. A questionnaire was prepared for collecting rating and other information. Items measuring the various constructs were distributed about in the questionnaire to reduce halo effects.

Data were collected by personal contact with respondents. Before collecting data, 5 undergraduate students in business management were trained about the survey and its administration. Because the goal was to develop a model, random sampling was not seen as necessary. Students were collecting data from people they did not know. Quota sampling was adopted to ensure that respondents were distributed across age and sex groups. Having enough respondents in certain categories was seen as important for data to be appropriate for estimating the model of concern.

In collecting data, respondents were asked to complete a printed questionnaire. The data collectors, as necessary, clarified the meaning of questions and answers. In other words they dealt with any problems encountered while answering questions. Data were collected during the spring of 2009. Of 307 questionnaires obtained about 50% were from male respondents (128 = 47.6%). The response rate was 90%. The majority of respondents were between 20-40 years of age (63.2%).

RESULTS AND DISCUSSIONS

A confirmatory factor analysis (CFA) using AMOS 5.0 and SPSS 15.0 were conducted to test the measurement model. This study uses AMOS 5.0 statistical software to test the structure equation model of “Effects of Switching Barriers on Satisfaction-Commitment Relationship”. Before testing the model, the data were examined. For making maximum likelihood estimates (ML) for path models (Kline, 1998), there are problems if certain conditions arise. There are likely to be outliers if the absolute value of skewness is greater than 3. Also, there is a distribution problem if the absolute value of kurtosis is larger than 10. One wants data that is approximately normally distributed for making ML estimates. For this research the skewness of variables ranges between -1.03 and .9 (Table 1) so the < 3 criterion is met. The kurtosis values are between -.636 and 2.037 so the < 10 criterion is met. Therefore, this enables us to proceed in evaluating the measurement models.

The chi-squares (86.04) is significant (p < 0.05; Bollen, 1989), a finding not unusual with large sample sizes (Doney and Cannon, 1997). The ratios of chi-square to degrees of freedom (df= 33) are 2.27 for measurement model within the acceptable range of 2 to 5 (Marsh and Hovecar, 1985). The values for GFI (0.957), AGFI (0.898), CFI (0.986), and RMSEA (0.072) are acceptably close to the standards suggested by Hu and Bentler (1999) 0.9 for GFI, 0.9 for AGFI, 0.95 for CFI and 0.08 for RMSEA. Given that these batteries of overall goodness-of-fit (GFI) indices were accurate and that the model was developed on theoretical bases, and given the high level of consistency samples, no respecifications of the model were made. This enables us to proceed in evaluating the reliability and validity.

This study assesses the quality of measurement efforts by investigating unidimensionality, convergent validity, reliability, discriminant validity. Evidence for the unidimensionality of each construct included appropriate items that loaded
at least 0.726 on their respective hypothesized component and loaded no larger than 0.30 on other components in a factor analysis (see Table 1). In addition, the overall goodness of fit supports unidimensionality (Steenkamp and van Trijp, 1991). Convergent validity was supported by all loadings being significant (p < 0.01) and nearly all SMC (square of multiple correlation) exceeding 0.50 (Hildebrandt, 1987). This study assesses reliability jointly for all items of a construct by computing the composite reliability (C.R.) and average variance extracted (AVE) (Baumgartner and Homburg, 1996; Steenkamp and van Trijp, 1991). For a construct to assess good reliability; composite reliability should be higher than 0.60, and the average variance extracted should at least be 0.50 (Bagozzi and Yi, 1988). All scales demonstrate good reliabilities. To examine discriminant validity, Current study first checks the coefficients of correlations between factors whether they are significantly lower than 1 and then compared the correlations between factors with their AVE (Gaski and Nevin, 1985). The results show that all of coefficients of correlations between factors are significantly lower than 1 and the correlations between factors are lower than their AVE, thus confirming discriminant validity (see Table 2). In summary, the measurement model demonstrates adequate unidimensionality, convergent validity, reliability, and discriminant validity. This enables us to proceed in evaluating hypotheses testing.

Hypotheses were tested using regression analysis. Before final hypothesis testing, the homogeneity was conducted to determine if pooling of the two types of farm (restaurant and lodging) was appropriate or whether separate models should be estimated (Bass and Wittink, 1975; Gujarati, 1988). The homogeneity test for each construct was not significant (F: 0.003- 0.288; p: 0.956-0.592), indicating that there were no differences in the regression model across farms and supporting the pooling of the two farms. Thus, two types of farm are merged in a model.

Hypotheses, then, were tested across the three regression models presented in Table 3. The control variables are assigned only in model 1. Model 2 is a main-effects model including only direct effects of satisfaction, switching barriers, and the covariate on AC. Consistent with Hypothesis 1, satisfaction was positively associated with AC (β= .567; t= 12.545; p= .000). Hypothesis 2a, SWC was not significant associated with AC (β= .002; t= .058; p= .954). Hypothesis 3a, AA was significantly and negatively associated with AC (β= -.319; t= -7.257; p= .000).

The interaction effects of SAT×SWC and SAT×AA were added in Model 3 and Model 4. Consistent with Hypothesis 2b, the significant interaction between SWC and SAT indicates that the relationship between SAT and AC depends on the strength of SWC (Model 4:β= .152; t= 3.312; p= .001). The interaction’s positive sign supports research prediction that as SWC become stronger, the association between SAT and AC increases. Consistent with Hypothesis 3b, the significant interaction between AA and SAT indicates that the relationship between SAT and AC depends on the strength of AA (Model 4:β= .199; t= 4.303; p= .000). The interaction’s positive sign supports research prediction that as AA become stronger, the association between SAT and AC increases.
Table 1. Reliability and convergent validity

<table>
<thead>
<tr>
<th>Concept</th>
<th>Items</th>
<th>Mean</th>
<th>S.D.</th>
<th>Skewness</th>
<th>Kurtosis</th>
<th>Loading((\lambda))</th>
<th>SMC</th>
<th>C.R.</th>
<th>AVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAT</td>
<td>sat1</td>
<td>5.01</td>
<td>1.33</td>
<td>-1.031</td>
<td>2.037</td>
<td>0.527</td>
<td>0.90</td>
<td>0.76</td>
<td></td>
</tr>
<tr>
<td></td>
<td>sat2</td>
<td>5.42</td>
<td>1.25</td>
<td>-0.435</td>
<td>-0.562</td>
<td>0.940</td>
<td>0.883</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>sat3</td>
<td>5.38</td>
<td>1.10</td>
<td>-0.515</td>
<td>0.406</td>
<td>0.927</td>
<td>0.859</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SWC</td>
<td>swc1</td>
<td>4.60</td>
<td>1.10</td>
<td>-0.047</td>
<td>0.939</td>
<td>0.623</td>
<td>0.90</td>
<td>0.76</td>
<td></td>
</tr>
<tr>
<td></td>
<td>swc2</td>
<td>4.46</td>
<td>1.07</td>
<td>0.090</td>
<td>1.113</td>
<td>0.847</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>swc3</td>
<td>4.50</td>
<td>1.14</td>
<td>-0.024</td>
<td>1.623</td>
<td>0.895</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AA</td>
<td>aa1</td>
<td>3.58</td>
<td>1.25</td>
<td>-0.055</td>
<td>-0.621</td>
<td>0.803</td>
<td>0.94</td>
<td>0.83</td>
<td></td>
</tr>
<tr>
<td></td>
<td>aa2</td>
<td>3.56</td>
<td>1.32</td>
<td>-0.040</td>
<td>-0.523</td>
<td>0.938</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>aa3</td>
<td>3.44</td>
<td>1.29</td>
<td>0.075</td>
<td>-0.292</td>
<td>0.756</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC</td>
<td>ac1</td>
<td>4.50</td>
<td>1.64</td>
<td>-0.394</td>
<td>-0.636</td>
<td>0.887</td>
<td>0.94</td>
<td>0.83</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ac2</td>
<td>4.36</td>
<td>1.61</td>
<td>-0.208</td>
<td>-0.569</td>
<td>0.969</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ac3</td>
<td>4.52</td>
<td>1.73</td>
<td>-0.232</td>
<td>-0.910</td>
<td>0.645</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Discriminant validity

<table>
<thead>
<tr>
<th>Concept</th>
<th>Mean</th>
<th>S.D.</th>
<th>SAT</th>
<th>SWC</th>
<th>AA</th>
<th>AC</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAT</td>
<td>5.27</td>
<td>1.11</td>
<td>0.76</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SWC</td>
<td>4.51</td>
<td>1.02</td>
<td>0.309**</td>
<td>0.76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AA</td>
<td>3.52</td>
<td>1.21</td>
<td>-0.457**</td>
<td>-0.053</td>
<td>0.83</td>
<td></td>
</tr>
<tr>
<td>AC</td>
<td>4.45</td>
<td>1.58</td>
<td>0.725**</td>
<td>0.209**</td>
<td>-0.547**</td>
<td>0.83</td>
</tr>
</tbody>
</table>

All of coefficients of correlations between factors are significant at 0.01 probabilities. Diagonal elements are AVE. Off-diagonal elements are correlations between factors.

Table 3. Regression Models Testing Main and Interaction Effects of Satisfaction and Switching Barriers on Affective Commitment (n=307)

<table>
<thead>
<tr>
<th>Dependent: AC</th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
<th>Model 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\beta)</td>
<td>T</td>
<td>B</td>
<td>(t)</td>
</tr>
<tr>
<td>Control</td>
<td>gender</td>
<td>.122</td>
<td>2.150</td>
<td>.036</td>
</tr>
<tr>
<td></td>
<td>age</td>
<td>.318</td>
<td>5.726</td>
<td>.077</td>
</tr>
<tr>
<td></td>
<td>education</td>
<td>-.024</td>
<td>-.437</td>
<td>.134</td>
</tr>
<tr>
<td></td>
<td>resident</td>
<td>.095</td>
<td>1.751</td>
<td>.020</td>
</tr>
<tr>
<td>H1: SAT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H2a: SWC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H3a: AA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interaction</td>
<td>H2b: SAT×SWC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H3b: SAT×AA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R²</td>
<td></td>
<td>0.095</td>
<td>0.594</td>
<td>0.603</td>
</tr>
<tr>
<td>F</td>
<td></td>
<td>0.115</td>
<td>0.489</td>
<td>0.010</td>
</tr>
</tbody>
</table>

Note: Values in table are standardized and VIF (1.0-2.34) for each model is smaller than 10.
CONCLUSION

Customer commitment can influence the way in which customers behave in relation to a firm (Bansal et al., 2004). This study tries to address the issue why visitors satisfied with farm but their revisiting intention and revisiting frequent is still low. The purposes of the present study are to increase our understanding of perceived switching costs and alternative attractiveness of a visitor and the role it plays in SAT-AC relation to switch leisure farms. The findings of present study provide supports for extending Jones et al.,’s (2000) and Liou et al.,’s (2007) to a leisure industry setting. That is, the current study finds support for the notion that visitors’ AC can be influenced by SAT (in line with Bansal et al.’s research) and AA (new finding); visitors’ SAT-AC relation can also be moderated only by AA (new finding).

With regard to the main effects, as expected, higher SAT can lead to higher AC. When visitors have highly satisfied with a farm, they might have higher AC to the farm they satisfied. This affective force binds the consumer to the service provider out of desire. It reflects an individual’s “psychological bond” (Gruen et al., 2000) with a service provider and is similar to “loyalty commitment” described by Gilliland and Bello (2002).

Second, another finding that higher AA might lead to lower AC is carried out. When consumers perceive few viable alternatives, the perceived benefits of defecting should be relatively low, resulting in higher levels of retention (Jones et al., 2000). Conversely, to the extent that alternative service providers are perceived to be attractive, consumers are less likely to feel “locked in” with their current service providers (Bansal et al., 2004). Thus, the probability of an emotional attachment to, identification with and involvement in a service provider should be increased before retention.

Unfortunately, higher SWC might lead to higher AC is not supported though SWC is positively associated with AC (see the coefficient in Table 2). As prior research stated that consumers are likely to feel “locked in” with their current service providers when they perceived higher SWC and they might feel he or she has to stay with the current service providers just based on cost-based consideration (continuance commitment), not a desire-based (AC) (Bansal et al., 2004).

With regard to the interaction effects, as expected, the SAT-AC relation will be enhanced when visitors perceived higher SWC and AA. Consistent with prior research, satisfaction should remain a primary strategic focus of service providers due to its strong impact on customer retention (Jones et al., 2000) and AC (Yen and Liou, 2009). As prior research demonstrated that firms should build up various switching barriers so as to retain existing customers despite their lack of satisfaction with the core service offering (Jones et al., 2000) is becoming more and more important. Satisfied visitors might have higher probability of an emotional attachment with a farm. But SAT-AC relation could be moderated while visitors perceived lower switching barriers.

In leisure setting, that the interaction effect of pull-out (AA) is larger than lock-in (SWC) seems to offer us some more information. First, managers of the farms should carefully consider how to build its unique characteristics or make a good market segmentation that other farms can not copy in short time. This way might benefit farm by attracting more and more visitors from other farms when the interaction effect of AA is larger than SWC in other farms. Second, as prior study stated that an investment of time, effort, and other irrecoverable resources in
a relationship creates psychological ties that motivate parties to continue the relationship and sets an expectation of reciprocation (De Wulf et al., 2001). Managers of the farms might try to lock visitors by adapting more preferential treatments, tangible rewards and interpersonal communications (Yen and Liou, 2009) when the interaction effect of SWC is larger than AA. Third, if managers of the farms can not distinguish the interaction effect of SWC and AA, they can focus on SAT improvement issue. Visitors’ SAT have a positive effect on AC (result of current study) before they revisit and it also the basic source of attitudinal loyalty (Bolton, 1998). The service quality and relationship efforts are, therefore, very important (Bolton, 1998). Making sure regularly service quality always stays at a higher level is needed for the farm.

Table 4. Appendix Measure item

<table>
<thead>
<tr>
<th>Concepts</th>
<th>Measure items</th>
</tr>
</thead>
<tbody>
<tr>
<td>Satisfaction</td>
<td>Overall, how do you feel about the service provided to you by this farm?</td>
</tr>
<tr>
<td></td>
<td>1. Displeased . . . Pleased</td>
</tr>
<tr>
<td></td>
<td>2. Disgusted . . .Contented</td>
</tr>
<tr>
<td></td>
<td>3. Dissatisfied . . . Satisfied</td>
</tr>
<tr>
<td>Alternative</td>
<td>1. All in all, competitors would be much more fair than this farm is</td>
</tr>
<tr>
<td>Attractiveness</td>
<td>2. I would be much more satisfied with the service available from competitors</td>
</tr>
<tr>
<td></td>
<td>than the service provided by this farm</td>
</tr>
<tr>
<td></td>
<td>3. Overall, competitors would do better to do business with than this farm</td>
</tr>
<tr>
<td>Switching Costs</td>
<td>1. In general it would be a hassle changing farms.</td>
</tr>
<tr>
<td></td>
<td>2. It would take a lot of time and effort changing farms.</td>
</tr>
<tr>
<td></td>
<td>3. For me, the costs in time, money, and effort to switch farms are high.</td>
</tr>
<tr>
<td>Affective Commitment</td>
<td>1. I feel “emotionally attached” to this farm.</td>
</tr>
<tr>
<td></td>
<td>2. I feel like “part of the family” with this farm.</td>
</tr>
<tr>
<td></td>
<td>3. I feel a strong sense of “belonging” to this farm.</td>
</tr>
</tbody>
</table>

REFERENCES

Effects of Switching Barriers of Visitors on Satisfaction-Commitment Relationship

H. H. J. Liu, et. al.

51 (6), 1173-1182.

