Efficient algorithms for frequent pattern mining in many-task computing environments

Kawuu W. Lin *, Yu-Chin Lo

Department of Computer Science and Information Engineering, National Kaohsiung University of Applied Sciences, Kaohsiung, Taiwan

A R T I C L E I N F O

Article history:
Received 17 March 2012
Received in revised form 17 March 2013
Accepted 8 April 2013
Available online 28 April 2013

Keywords:
Data mining
Many-task computing
Cloud computing
Association rule mining
Frequent pattern mining

A B S T R A C T

The goal of data mining is to discover hidden useful information in large databases. Mining frequent patterns from transaction databases is an important problem in data mining. As the database size increases, the computation time and required memory also increase. Because the number of items increases, the user behaviours also become more complex. To solve the problem of increasing complexity, many researchers have applied parallel and distributed computing techniques to the discovery of frequent patterns from large amounts of data. However, most studies have focused on improving the performance for a single task and have neglected the many-task computing issue, which is important in the current cloud-computing environments. In these environments, an application is often provided as a service, e.g., the Google search engine, implying that many users can use it simultaneously. In this paper, we propose a set of algorithms, containing the Equal Working Set (EWS) algorithm, the Request On Demand (ROD) algorithm, the Small Size Working Set (SSWS) algorithm and the Progressive Size Working Set (PSWS) algorithm, for frequent pattern mining that provides a fast and scalable mining service in many-task computing environments. Through empirical evaluations in various simulation conditions, the proposed algorithms are shown to deliver excellent performance with respect to scalability and execution time.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Frequent pattern mining involves searching in a database for a pattern that appears more frequently than a specified threshold. An association rule is defined as \(X \Rightarrow Y \), where \(X \) and \(Y \) are itemsets. Association rule mining is used to discover sets of items, i.e., frequent patterns, associated with other items in the database. Studies on frequent pattern mining are usually classified into two types: (1) the generate-and-test [3] (Apriori-like) approach and (2) the frequent pattern growth [9] approach (FP-growth-like). The Apriori-like methods iteratively generate a candidate itemset with size \((k+1)\) from frequent itemsets of size \(k\) and scan the database repetitively to test the frequency of each candidate itemset. The Apriori-like methods inherently suffer from the following two costs [9]:

– The cost in memory required to handle a large number of candidate itemsets is high. For example, if there are \(n\) frequent length-1 itemsets, there will be \(n \times (n - 1)/2\) length-2 candidates. The method accumulates the frequency for each candidate, encountering two critical problems. The first problem is that the main memory is limited and cannot store whole candidates. The second problem is that even if the whole candidates can be loaded into the main memory, the performance of accumulating the frequency will be low because the method spends a large amount of computational time searching for the candidate in a large candidate pool, increasing the frequency for the candidate each time it is found. Moreover, to discover a length \(l\) frequent pattern, the method must generate \(2^{l-2}\) candidates. The scalability of Apriori-like methods is thus restricted by the high memory cost.

– The database scanning cost to discover frequent patterns is also high. Assume the length of the longest pattern in the database is \(l\). The Apriori-like methods require \(l\) physical database scans for pattern discovery. A physical database scan consumes a large amount of computational time because of the resulting data explosion. To reduce the times of the database scans is one way to reduce execution time.

Han et al. [9] proposed a novel data structure, called frequent pattern tree (FP-tree), in which transactions are compressed and stored. A mining algorithm, FP-growth, was then proposed to discover frequent patterns from the FP-tree without generating candidates, therefore enhancing the scalability of the method. FP-growth requires only two scans of the physical database and also greatly reduces the execution time. After two scans of the database, the method constructs a header table and a FP-tree.
corresponding to the database. It then uses the FP-growth algorithm to discover frequent patterns by recursively reconstructing conditional FP-trees from the original FP-tree. An entry of the header table records an item (usually an ID) and the first appearance node in the FP-tree. A node of the FP-tree consists of an attribute for storing the item, a reference for its parent, a set of references for its children nodes, and a reference for the next node with the same item in the FP-tree. The scalability of FP-growth/FP-growth-like methods is limited by the main memory size because all of the reconstructed FP-trees with the header tables are stored in the main memory. Moreover, the scalability and the execution performance of FP-growth-like methods are restricted to the FP-tree size. In an FP-tree study, a large FP-tree is a tree that has many branches or a tree with a high number of average fan-out nodes. A large FP-tree is derived from one or a combination of the following three causes: data characteristics, such as a large number of items; user behavior characteristics, such as a long transaction length; and mining parameters, such as a small support threshold. If an FP-tree is large, the methods need a large amount of memory to store the FP-tree, the conditional FP-trees and the header tables, as well as a large amount of computational time to reconstruct the conditional FP-trees to complete the mining. A large database might contain a large number of items, complex user behaviors, etc., causing a sharp increase in the computation time and required memory for mining frequent patterns.

Many studies on frequent pattern mining have proposed improvements in execution time efficiency. Parallel and distributed computing techniques have attracted attention for their ability to manage and compute large amounts of data [18]. The difficulties encountered when mining large databases research into the design of parallel and distributed algorithms [4,8] and architectures like grid [1,6,7,19,21,23], cluster [7,11,23,24], cloud [10,14,15,22] and shared nothing parallel machines [12] to solve the problem. Previous studies have also used multiprocessor architectures to improve performance [13], but the expense of the machines slowed down the advancement of this approach. In [5], the authors proposed a tree projection technique to achieve parallelism. The technique requires a large amount of memory and is therefore not very practical. The approach used in most current studies is to divide the database and distribute each section to nodes or processors for mining, thus distributing the computational load. During the mining process, the nodes exchange required transactions with one another. The data transmission via the network involves at least four layers, including the physical/data link layer, the network layer, the transport layer, and the combined session/presentation/application layer. Each layer uses its own protocol to pack the data in the sender and to unpack the data in the receiver. In addition to the protocol cost, transmission via the physical network is time-consuming. For this reason, the workload of exchanging data among nodes increases with large database size. Reducing the amount of data transmitted over the network can significantly improve the execution time. Although many algorithms have been proposed, the execution efficiency of frequent pattern mining remains a challenge to researchers because of the explosion of data.

In [16], the authors proposed the data mining method CARM, which efficiently utilizes cloud nodes to discover frequent patterns in cloud computing environments. In these environments, workload balancing among computing nodes is one of the most critical issues affecting execution performance. CARM has demonstrated its superior workload balancing as compared with the well-known BTP-tree algorithm [25], however, CARM focuses only on accelerating the mining process for a single task. Many-task computing is becoming popular, and should be considered. Many-task computing is used to bridge the gap between high throughput computing and high performance computing [17]. There are many applications where many-task computing would be useful, such as astronomy, bioinformatics, cognitive neuroscience, and data mining. A common characteristic of all these applications is that they are often provided as services, e.g., the Google search engine, implying that many users can use it simultaneously [17]. Therefore, an appropriate design for such environments is necessary.

The primary contributions of this study are: (1) a brief data structure to store tree reconstruction information and minimize data transmission on the network, (2) a set of algorithms based on CARM that discovers frequent patterns capable of providing fast and scalable service in many-task computing environments, and (3) a series of experiments to evaluate the performance of the proposed algorithms. Through empirical evaluations at various simulation conditions, we observed the proposed algorithm requires only 12.2% and 18% execution time, using TPFP-tree [24] and BTP-tree, respectively, when there are 100 mining tasks. The improvement increases with an increase in the number of mining tasks.

In the following sections, we briefly review related work in Section 2. Section 3 presents the algorithms for many-task frequent pattern mining. Section 4 provides an empirical evaluation of the performance of the algorithms. Section 5 presents the conclusions and future work.

2. Related work

In this section, we review previous studies on three subjects closely related to this research: (1) FP-tree and FP-growth, (2) parallel and distributed frequent pattern mining and (3) CARM algorithm.

2.1. FP-tree and FP-growth

Han et al. [9] proposed a tree-based data structure, FP-tree, and the corresponding mining algorithm, FP-growth, for discovering frequent patterns. The algorithm requires two database scans to complete the mining task. The first scan calculates the support for each item. This scan also creates a header table, recording the item name, its corresponding support and the first node-link linking to the first node in the FP-tree with the same item name. The support sorts items in the header table in descending order. For each transaction, items with support values under the threshold are filtered out in the second scan, and the remaining items are sorted in descending order using their support values. The sorted items in each transaction are inserted into the FP-tree. The FP-tree structure contains a root node labelled as null, a set of item-prefix subtrees as the children of root, and a header table. The FP-tree node structure is <item-name, count (support), node-link>, in which item-name is the item name used for identification, count is the number of transactions reaching this node by the same path from root, and node-link is a pointer linking to the next node in the FP-tree with the same item name.

To insert transaction P into FP-tree T, we check whether T has a child n such that n.item-name is identical to the item-name of the first element of P. If the node exists, the count of n is increased by 1. Otherwise, it creates a new node, m, with the same item name as n. The count of m is set to 1, the parent link is set to T, and m's node-link is set to the nodes with the same item-name using the node-link structure. We recursively perform the insertion for each item in P until each item is inserted into the FP-tree. After constructing the FP-tree, FP-growth is used to discover the frequent patterns. An item in the header table is selected to construct the conditional FP-tree by inserting all prefix paths of the item, which can be retrieved using the node-link structure in header table. The item name is called the conditional pattern base. The FP-growth is executed
recursively, and the conditional pattern base is cascaded by a new one in each recursion until the conditional FP-tree contains only a single path or is an empty tree. The frequent patterns can be easily generated using the cascaded conditional pattern base and the FP-tree. After processing each item in header table, all frequent patterns are obtained.

Fig. 1 is an example of FP-tree construction and FP-growth. Assume the support threshold is set to 2. The algorithm scans the database to obtain the support value of each item, sorts all of the items by support value in descending order, and filters out the items with value < 2, as shown in Fig. 1-(1) and Fig. 1-(2). To build the FP-tree, the algorithm scans the database again. For each transaction, the items are sorted by support value in descending order (Fig. 1-(3)) and are inserted into the FP-tree (Fig. 1-(4)). Fig. 1-(5) is the conditional FP-tree, built by using item c as the conditional pattern base. Because the FP-tree contains only a single path (b:3 → a:2), the frequent patterns can be discovered directly by cascading c with a, b, and ab, i.e., ca:2, cb:3, and cab:2.

2.2. Parallel and distributed frequent pattern mining

To improve frequent pattern mining performance, many researchers distribute the mining computation over more than one processor/node, as shown in Fig. 2.

In [8], the authors proposed an Apriori-like method for mining frequent patterns on a multi-processor machine. They executed the method on a 128-processor parallel computer to evaluate the scalability and execution performance. The method includes the intelligent data distribution (IDD) algorithm to distribute the sections of the database and minimise the communication overhead among the processors, and the hybrid distribution (HD) algorithm that further improves the load balance in IDD by grouping processors dynamically and partitioning the candidates correspondingly.

A previous study [13] proposed a parallel algorithm called Parallel FP-tree (PFP-tree), based on the FP-tree data structure, to mine frequent patterns on message-passing multiprocessor systems. The proposed algorithm divides the database into several non-overlapping parts according to the number of available processors and lets each processor construct its FP-tree by exchanging necessary information with other processors. Because both of the methods in [8,13] are performed in a node, the data are exchanged within the same node, thus reducing the required overhead. To parallelise frequent pattern mining, previous studies primarily relied on the database dividing method [4,23,25]. The database is divided equally or using some criteria, and each part is sent to the node for mining. The approach that duplicates the database to other nodes risks leaking data; therefore, this approach cannot preserve data privacy.

In cloud computing environments, network latency is an important issue that should be carefully considered. Generally, the targeted database size is always large in mining applications. Transmitting the database and exchanging large amounts of data over the internet greatly decrease performance. In a previous study [20], the proposed method, QFP-growth, divides the database equally and constructs FP-trees based on the assigned database parts. The FP-trees are then merged to a FP-tree to complete the mining task. A previous study examined data transmission overhead [24]. The authors observed that exchanging transactions requires much more time than mining. To efficiently exchange transactions among nodes in the database dividing approach, the TPFP-tree was proposed using a transaction identification set (Tidset) to select the transactions directly instead of scanning the physical database. The Tidset is a table recording the IDs of transactions that contain a certain item, so its required memory has the same size as the assigned partial database. TPFP is thus bound to the targeted database size.

To balance the TPFP-tree computing loading, the authors [25] proposed the BTP-tree algorithm, which is a balanced Tidset-based parallel FP-tree algorithm, to mine frequent patterns. The algorithm divides the database into p equal parts, where p is the number of nodes. The partial databases are sent to the nodes individually. Each node establishes a Tidset and header table in accordance with the assigned database. A global header table, GHT, is derived by filtering out items with supports under the threshold from the table that collects all node header tables. Before executing the mining task, the BTP-tree algorithm calculates a performance index for each node and records the sum of the performance indices. A mining task is then separated into p sub-tasks, where the loading of each task is calculated using the number of items in each header table as a unit. The task assignment is decided
using the performance indexing mechanism. After task assignment, each node constructs its Tidset for fast selection use. The required transactions are exchanged among nodes to generate new sub-databases by referring to items in header tables. Finally, the FP-growth is performed on each node to discover frequent patterns. The frequent patterns are further gathered from all nodes to obtain the complete frequent patterns.

2.3. CARM algorithm

In [16], the authors did not use the database dividing approach, but proposed a different approach to preserve data privacy during the mining process. The CARM algorithm consists of two algorithms; the high-workability distributed FP-mine (HD-Mine) and the fast distributed FP-mine (FD-Mine). The primary functionality of HD-Mine is to utilise the cloud nodes to mine the dataset that contains a large number of frequent patterns, as indicated by a small support threshold, a large number of items, or a large database. The limitation of conventional algorithms for mining this type of dataset is the available memory of a single node. The HD-Mine can merge the memory of several nodes to discover the frequent patterns. Furthermore, cloud computing techniques are often expected to have high computation ability. The FD-Mine focuses on the fast discovery of frequent patterns by utilising the cloud nodes and is useful for applications that require real-time mining.

To process a mining task, CARM invokes FD-Mine first to quickly discover the frequent patterns. Because FD-Mine occupies more memory than HD-Mine, HD-Mine will be invoked if FD-Mine cannot mine the database. Finally, the algorithm ends by returning the frequent patterns. In CARM, the execution efficiency is set as the highest priority; hence CARM applies FD-Mine first. If FD-Mine fails, CARM will use HD-Mine to complete the mining task. A comparison with previous methods is shown in Table 1.

Table 1

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Architecture</th>
<th>Hardware cost</th>
<th>Scalability</th>
<th>Communication overhead</th>
<th>Privacy-preserved</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDD/HD</td>
<td>Apriori-like/FP-growth-like</td>
<td>High</td>
<td>Low</td>
<td>Low</td>
<td>X</td>
</tr>
<tr>
<td>PFP-tree</td>
<td>FP-growth-like/Multiprocessor</td>
<td>High</td>
<td>Low</td>
<td>Low</td>
<td>X</td>
</tr>
<tr>
<td>TPP-tree</td>
<td>FP-growth-like/Distributed computing</td>
<td>Medium</td>
<td>Low</td>
<td>High</td>
<td>X</td>
</tr>
<tr>
<td>BTP-tree</td>
<td>FP-growth-like/Distributed computing</td>
<td>Medium</td>
<td>Low</td>
<td>High</td>
<td>X</td>
</tr>
<tr>
<td>CARM</td>
<td>FP-growth-like/Distributed computing</td>
<td>Medium</td>
<td>Medium</td>
<td>Medium</td>
<td>Y</td>
</tr>
</tbody>
</table>

Fig. 2. The conventional architecture for parallel and distributed frequent pattern mining.

3. Proposed method

In many-task computing environments, rapid mining requires both good algorithm design and little data transmission over the network. A good algorithm for distributing workload has minimal
distribute each part of the database to nodes or processors for minimum storage cost [16]. The existing studies generally divide the database and perform many-task computing based on our previously proposed architecture. The trusted node should provide enough memory space for mining. The conditional FP-tree is distributed to an available computing node to mine the conditional FP-tree in the trusted node, the reconstructed conditional FP-tree is distributed to an available computing node for mining. The trusted node should provide enough memory space for the original FP-tree. Obviously, the scalability is restricted by the main memory size of the trusted node. Therefore, we will design a more scalable algorithm in the future.

For future work, we will create an open web site that allows users to upload datasets and mine frequent patterns, as well as evaluate the performance of the proposed algorithms. Although CARM is a fast and scalable distributed algorithm in comparison with previous studies, the scalability is still limited. This is because the HD-Mine used in CARM establishes the FP-tree in the main memory of the trusted node [16]. If there is no memory space to mine the conditional FP-tree in the trusted node, the reconstructed conditional FP-tree is distributed to an available computing node for mining. The trusted node should provide enough memory space for the original FP-tree. Obviously, the scalability is restricted by the main memory size of the trusted node. Therefore, we will design a more scalable algorithm in the future.

5. Conclusions and future work

In this paper, we have presented a set of algorithms to efficiently utilise cloud nodes to discover frequent patterns for many-task computing based on our previously proposed architecture [16]. The existing studies generally divide the database and distribute each part of the database to nodes or processors for minimizing the required execution time and communication time. Our proposed algorithms are thus shown to deliver excellent scalability and execution time.

For future work, we will create an open web site that allows users to upload datasets and mine frequent patterns, as well as evaluate the performance of the proposed algorithms. Although CARM is a fast and scalable distributed algorithm in comparison with previous studies, the scalability is still limited. This is because the HD-Mine used in CARM establishes the FP-tree in the main memory of the trusted node [16]. If there is no memory space to mine the conditional FP-tree in the trusted node, the reconstructed conditional FP-tree is distributed to an available computing node for mining. The trusted node should provide enough memory space for the original FP-tree. Obviously, the scalability is restricted by the main memory size of the trusted node. Therefore, we will design a more scalable algorithm in the future.

Acknowledgement

Part of this work was supported by the National Science Council of Taiwan, R.O.C., under grant No. NSC 101-2221-E-151-042.

References

